Understanding the use of lambda expressions in Java

Author:

Mazinanian Davood1,Ketkar Ameya2,Tsantalis Nikolaos1,Dig Danny2

Affiliation:

1. Concordia University, Canada

2. Oregon State University, USA

Abstract

Java 8 retrofitted lambda expressions, a core feature of functional programming, into a mainstream object-oriented language with an imperative paradigm. However, we do not know how Java developers have adapted to the functional style of thinking, and more importantly, what are the reasons motivating Java developers to adopt functional programming. Without such knowledge, researchers miss opportunities to improve the state of the art, tool builders use unrealistic assumptions, language designers fail to improve upon their designs, and developers are unable to explore efficient and effective use of lambdas. We present the first large-scale, quantitative and qualitative empirical study to shed light on how imperative programmers use lambda expressions as a gateway into functional thinking. Particularly, we statically scrutinize the source code of 241 open-source projects with 19,770 contributors, to study the characteristics of 100,540 lambda expressions. Moreover, we investigate the historical trends and adoption rates of lambdas in the studied projects. To get a complementary perspective, we seek the underlying reasons on why developers introduce lambda expressions, by surveying 97 developers who are introducing lambdas in their projects, using the firehouse interview method. Among others, our findings revealed an increasing trend in the adoption of lambdas in Java: in 2016, the ratio of lambdas introduced per added line of code increased by 54% compared to 2015. Lambdas were used for various reasons, including but not limited to (i) making existing code more succinct and readable, (ii) avoiding code duplication, and (iii) simulating lazy evaluation of functions. Interestingly, we found out that developers are using Java's built-in functional interfaces inefficiently, i.e., they prefer to use general functional interfaces over the specialized ones, overlooking the performance overheads that might be imposed. Furthermore, developers are not adopting techniques from functional programming, e.g., currying. Finally, we present the implications of our findings for researchers, tool builders, language designers, and developers.

Funder

National Science Foundation

Natural Sciences and Engineering Research Council of Canada

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Understanding the Motivations, Challenges, and Practices of Software Rejuvenation;2023 IEEE International Conference on Software Maintenance and Evolution (ICSME);2023-10-01

2. Embracing modern C++ features: An empirical assessment on the KDE community;Journal of Software: Evolution and Process;2023-08-02

3. Large‐scale characterization of Java streams;Software: Practice and Experience;2023-06-05

4. Method Chaining Redux: An Empirical Study of Method Chaining in Java, Kotlin, and Python;2023 IEEE/ACM 20th International Conference on Mining Software Repositories (MSR);2023-05

5. Does the Stream API Benefit from Special Debugging Facilities? A Controlled Experiment on Loops and Streams with Specific Debuggers;2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE);2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3