Personalizing queries based on networks of composite preferences

Author:

Koutrika Georgia1,Ioannidis Yannis2

Affiliation:

1. Stanford University, USA, Stanford, CA

2. University of Athens, Greece

Abstract

People's preferences are expressed at varying levels of granularity and detail as a result of partial or imperfect knowledge. One may have some preference for a general class of entities, for example, liking comedies, and another one for a fine-grained, specific class, such as disliking recent thrillers with Al Pacino. In this article, we are interested in capturing such complex, multi-granular preferences for personalizing database queries and in studying their impact on query results. We organize the collection of one's preferences in a preference network (a directed acyclic graph), where each node refers to a subclass of the entities that its parent refers to, and whenever they both apply, more specific preferences override more generic ones. We study query personalization based on networks of preferences and provide efficient algorithms for identifying relevant preferences, modifying queries accordingly, and processing personalized queries. Finally, we present results of both synthetic and real-user experiments, which: (a) demonstrate the efficiency of our algorithms, (b) provide insight as to the appropriateness of the proposed preference model, and (c) show the benefits of query personalization based on composite preferences compared to simpler preference representations.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intelligent recommender system based on quantum clustering and matrix completion;Concurrency and Computation: Practice and Experience;2022-03-15

2. Foundations of Context-aware Preference Propagation;Journal of the ACM;2020-04-05

3. Learning Fuzzy SPARQL User Preferences;2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI);2019-11

4. User Profile Construction Method for Personalized Access to Data Sources Using Multivariate Conjoint Analysis and Collaborating Filtering;New Statistical Developments in Data Science;2019

5. Collaborating filtering using unsupervised learning for image reconstruction from missing data;EURASIP Journal on Advances in Signal Processing;2018-11-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3