An overview of the SR language and implementation

Author:

Andrews Gregory R.1,Coffin Michael1,Elshoff Irving1,Nilsen Kelvin1,Townsend Gregg1,Olsson Ronald A.2,Purdin Titus3

Affiliation:

1. Univ. of Arizona, Tucson

2. Univ. of California at Davis, Davis

3. Colorado State Univ., Fort Collins

Abstract

SR is a language for programming distributed systems ranging from operating systems to application programs. On the basis of our experience with the initial version, the language has evolved considerably. In this paper we describe the current version of SR and give an overview of its implementation. The main language constructs are still resources and operations. Resources encapsulate processes and variables that they share; operations provide the primary mechanism for process interaction. One way in which SR has changed is that both resources and processes are now created dynamically. Another change is that inheritance is supported. A third change is that the mechanisms for operation invocation—call and send—and operation implementation—proc and in—have been extended and integrated. Consequently, all of local and remote procedure call, rendezvous, dynamic process creation, asynchronous message passing, multicast, and semaphores are supported. We have found this flexibility to be very useful for distributed programming. Moreover, by basing SR on a small number of well-integrated concepts, the language has proved easy to learn and use, and it has a reasonably efficient implementation.

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Reference36 articles.

Cited by 100 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Experimentation Framework for Specification and Verification of Web Services;Annals of Computer Science and Information Systems;2022-09-26

2. Advanced control‐flow and concurrency in C∀;Software: Practice and Experience;2020-12

3. Reducing distributed JR program start-up time via extending JR's operation abstraction;Concurrency and Computation: Practice and Experience;2018-01-24

4. A Note on Correctly Gathering Results from JR's Concurrent Invocation Statement;Scalable Computing: Practice and Experience;2017-09-10

5. Control Flow Paradigms;Understanding Control Flow;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3