Fair Single Index Model

Author:

Wang Yidong1ORCID,Ding Meng2ORCID,Xu Jinhui2ORCID,Wang Di3ORCID

Affiliation:

1. The Hong Kong Polytechnic University, China

2. The State University of New York at Buffalo, USA

3. King Abdullah University of Science and Technology, Saudi Arabia

Abstract

Single-index models (SIMs) have been widely used in various applications due to their simplicity and interpretability. However, despite the potential for SIMs to result in discriminatory outcomes based on sensitive attributes like gender, race, or ethnicity, the issue of fairness has not been thoroughly examined in recent studies on the topic. This paper aims to address these fairness concerns by proposing methods for building fair SIMs. Specifically, based on the definition of equal opportunity, we first provide a fairness definition for SIM. Next, we develop a unified fair SIM model and propose an efficient method to solve the fair SIM. Theoretically, we also show that our output is consistent in fairness. Finally, we conduct comprehensive experimental studies over 7 benchmark datasets and demonstrate that our fair SIM outperforms the other 8 baseline methods.

Publisher

Association for Computing Machinery (ACM)

Reference47 articles.

1. Alekh Agarwal Alina Beygelzimer Miroslav Dudík John Langford and Hanna Wallach. 2018. A Reductions Approach to Fair Classification. arXiv:1803.02453 [cs.LG]

2. Alekh Agarwal, Miroslav Dudík, and Zhiwei Steven Wu. 2019. Fair regression: Quantitative definitions and reduction-based algorithms. In International Conference on Machine Learning. PMLR, 120–129.

3. Julia Angwin Jeff Larson Surya Mattu and Lauren Kirchner. 2016. How We Analyzed the COMPAS Recidivism Algorithm. https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm

4. Yahav Bechavod and Katrina Ligett. 2017. Penalizing unfairness in binary classification. arXiv preprint arXiv:1707.00044 (2017).

5. Richard Berk, Hoda Heidari, Shahin Jabbari, Matthew Joseph, Michael Kearns, Jamie Morgenstern, Seth Neel, and Aaron Roth. 2017. A convex framework for fair regression. arXiv preprint arXiv:1706.02409 (2017).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3