1. Bengio Y. and Grandvalet Y. 2003. No unbiased estimator of the variance of k-fold cross validation. J. Mach. Learn. Res. Bengio Y. and Grandvalet Y. 2003. No unbiased estimator of the variance of k-fold cross validation. J. Mach. Learn. Res.
2. Bertsimas D. and Popescu I. 1998. Optimal inequalities in probability theory: A convex optimization approach. Tech. rep. Department of Mathematics O.R. Cambridge Massachusetts 02139. Bertsimas D. and Popescu I. 1998. Optimal inequalities in probability theory: A convex optimization approach. Tech. rep. Department of Mathematics O.R. Cambridge Massachusetts 02139.
3. Blum A. Kalai A. and Langford J. 1999. Beating the hold-out: Bounds for k-fold and progressive cross-validation. In Computational Learing Theory 203--208. 10.1145/307400.307439 Blum A. Kalai A. and Langford J. 1999. Beating the hold-out: Bounds for k-fold and progressive cross-validation. In Computational Learing Theory 203--208. 10.1145/307400.307439
4. Boucheron S. Bousquet O. and Lugosi G. 2005. Introduction to statistical learning theory. http://www.kyb.mpg.de/publications/pdfs/pdf2819.pdf. Boucheron S. Bousquet O. and Lugosi G. 2005. Introduction to statistical learning theory. http://www.kyb.mpg.de/publications/pdfs/pdf2819.pdf.
5. Boyd S. and Vandenberghe L. 2004. Convex Optimization. Cambridge. Boyd S. and Vandenberghe L. 2004. Convex Optimization. Cambridge.