Animation cartography—intrinsic reconstruction of shape and motion

Author:

Tevs Art1,Berner Alexander1,Wand Michael1,Ihrke Ivo1,Bokeloh Martin1,Kerber Jens1,Seidel Hans-Peter1

Affiliation:

1. Max-Planck Institut Informatik, and Saarland University, Germany

Abstract

In this article, we consider the problem of animation reconstruction, that is, the reconstruction of shape and motion of a deformable object from dynamic 3D scanner data, without using user-provided template models. Unlike previous work that addressed this problem, we do not rely on locally convergent optimization but present a system that can handle fast motion, temporally disrupted input, and can correctly match objects that disappear for extended time periods in acquisition holes due to occlusion. Our approach is motivated by cartography: We first estimate a few landmark correspondences, which are extended to a dense matching and then used to reconstruct geometry and motion. We propose a number of algorithmic building blocks: a scheme for tracking landmarks in temporally coherent and incoherent data, an algorithm for robust estimation of dense correspondences under topological noise, and the integration of local matching techniques to refine the result. We describe and evaluate the individual components and propose a complete animation reconstruction pipeline based on these ideas. We evaluate our method on a number of standard benchmark datasets and show that we can obtain correct reconstructions in situations where other techniques fail completely or require additional user guidance such as a template model.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Editing mesh sequences with varying connectivity;Computers & Graphics;2024-06

2. A review of non-rigid transformations and learning-based 3D point cloud registration methods;ISPRS Journal of Photogrammetry and Remote Sensing;2023-02

3. 4D Atlas: Statistical Analysis of the Spatiotemporal Variability in Longitudinal 3D Shape Data;IEEE Transactions on Pattern Analysis and Machine Intelligence;2023-02-01

4. Learning Spectral Unions of Partial Deformable 3D Shapes;Computer Graphics Forum;2022-05

5. RobustFusion: Robust Volumetric Performance Reconstruction Under Human-Object Interactions From Monocular RGBD Stream;IEEE Transactions on Pattern Analysis and Machine Intelligence;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3