Newest collaborative and hybrid network intrusion detection framework based on suricata and isolation forest algorithm

Author:

Chiba Zouhair1,Abghour Noreddine1,Moussaid Khalid1,Omri Amina El1,Rida Mohamed1

Affiliation:

1. Hassan II University of Casablanca, Casablanca, Morocco

Publisher

ACM

Reference44 articles.

1. Entropy-Based Anomaly Detection in a Network

2. Intrusion detection using deep belief networks

3. Hodo E. Bellekens X. Hamilton A. Tachtatzis C. and Atkinson R. 2017. Shallow and Deep Networks Intrusion Detection System: A Taxonomy and Survey. arXiv preprint arXiv:1701.02145. 2015 1--43. [Online]. Available: https://arxiv.org/ftp/arxiv/papers/1701/1701.02145.pdf. [Accessed: 15-June-2019]. Hodo E. Bellekens X. Hamilton A. Tachtatzis C. and Atkinson R. 2017. Shallow and Deep Networks Intrusion Detection System: A Taxonomy and Survey. arXiv preprint arXiv:1701.02145. 2015 1--43. [Online]. Available: https://arxiv.org/ftp/arxiv/papers/1701/1701.02145.pdf. [Accessed: 15-June-2019].

4. Diro A. A. and Chilamkurti N. 2018. Distributed attack detection scheme using deep learning approach for Internet of Things. Future Generation Computer Systems. 82 (May 2018) 761--768. 10.1016/j.future.2017.08.043 Diro A. A. and Chilamkurti N. 2018. Distributed attack detection scheme using deep learning approach for Internet of Things. Future Generation Computer Systems. 82 (May 2018) 761--768. 10.1016/j.future.2017.08.043

5. Kim H. Kim J. Kim Y. Kim I. and Kim K. J. 2018. Design of network threat detection and classification based on machine learning on cloud computing. Cluster Computing. (Feb. 2018) 1--10. 10.1007/s10586-018-1841-8 Kim H. Kim J. Kim Y. Kim I. and Kim K. J. 2018. Design of network threat detection and classification based on machine learning on cloud computing. Cluster Computing. (Feb. 2018) 1--10. 10.1007/s10586-018-1841-8

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TTANAD: Test-Time Augmentation for Network Anomaly Detection;Entropy;2023-05-19

2. Zero-day attack detection: a systematic literature review;Artificial Intelligence Review;2023-02-27

3. CBSeq: A Channel-Level Behavior Sequence for Encrypted Malware Traffic Detection;IEEE Transactions on Information Forensics and Security;2023

4. Hybrid Intrusion Detection System Using Autoencoders and Snort;ICT with Intelligent Applications;2023

5. An Intrusion Detection System for Zero-Day Attacks to Reduce False Positive Rates;2022 International Conference for Advancement in Technology (ICONAT);2022-01-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3