1. 2017. Federated Learning: Collaborative Machine Learning without Centralized Training Data. https://blog.research.google/2017/04/federated-learning-collaborative.html. Accessed on April 06 2024.
2. Rami Al-Rfou, Marc Pickett, Javier Snaider, Yun-Hsuan Sung, Brian Strope, and Ray Kurzweil. 2016. Conversational contextual cues: The case of personalization and history for response ranking. arXiv preprint arXiv:1606.00372 (2016).
3. XiNet: Efficient Neural Networks for tinyML
4. Sean Augenstein, H. Brendan McMahan, Daniel Ramage, Swaroop Ramaswamy, Peter Kairouz, Mingqing Chen, Rajiv Mathews, and Blaise Agüera y Arcas. 2019. Generative Models for Effective ML on Private, Decentralized Datasets. CoRR abs/1911.06679 (2019). arXiv:1911.06679http://arxiv.org/abs/1911.06679
5. Zachary Charles, Zachary Garrett, Zhouyuan Huo, Sergei Shmulyian, and Virginia Smith. 2021. On large-cohort training for federated learning. Advances in neural information processing systems 34 (2021), 20461–20475.