Listen to Your Fingers

Author:

Chen Huijie1,Li Fan1,Du Wan2,Yang Song1,Conn Matthew3,Wang Yu4

Affiliation:

1. School of Computer Science, Beijing Institute of Technology, Beijing, China

2. Department of Computer Science and Engineering, The University of California, Merced, Merced, USA

3. Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, USA

4. Department of Computer and Information Sciences, Temple University, Philadelphia, USA

Abstract

Inputting a pattern or PIN code on the touch screen is a popular method to prevent unauthorized access to mobile devices. However, these sensitive tokens are highly susceptible to being inferred by various types of side-channel attacks, which can compromise the security of the private data stored in the device. This paper presents a second-factor authentication method, TouchPrint, which relies on the user's hand posture shape traits (dependent on the individual different posture type and unique hand geometry biometrics) when the user inputs PIN or pattern. It is robust against the behavioral variability of inputting a passcode and places no restrictions on input manner (e.g., number of the finger touching the screen, moving speed, or pressure). To capture the spatial characteristic of the user's hand posture shape when input the PIN or pattern, TouchPrint performs active acoustic sensing to scan the user's hand posture when his/her finger remains static at some reference positions on the screen (e.g., turning points for the pattern and the number buttons for the PIN code), and extracts the multipath effect feature from the echo signals reflected by the hand. Then, TouchPrint fuses with the spatial multipath feature-based identification results generated from the multiple reference positions to facilitate a reliable and secure MFA system. We build a prototype on smartphone and then evaluate the performance of TouchPrint comprehensively in a variety of scenarios. The experiment results demonstrate that TouchPrint can effectively defend against the replay attacks and imitate attacks. Moreover, TouchPrint can achieve an authentication accuracy of about 92% with only ten training samples.

Funder

Beijing Natural Science Foundation

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AirLock: Unlock in-air via hand rotation recognition;Expert Systems with Applications;2024-11

2. Touch Authentication for Sharing Context Using Within-Group Similarity Structure;IEEE Internet of Things Journal;2024-09-01

3. Privacy Preserving Release of Mobile Sensor Data;Proceedings of the 19th International Conference on Availability, Reliability and Security;2024-07-30

4. A Systematic Review of Human Activity Recognition Based on Mobile Devices: Overview, Progress and Trends;IEEE Communications Surveys & Tutorials;2024

5. LipAuth: Securing Smartphone User Authentication With Lip Motion Patterns;IEEE Internet of Things Journal;2024-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3