User-Constrained Multimodal Route Planning

Author:

Dibbelt Julian1,Pajor Thomas1,Wagner Dorothea1

Affiliation:

1. Karlsruhe Institute of Technology, Karlsruhe, Germany

Abstract

In the multimodal route planning problem, we are given multiple transportation networks (e.g., pedestrian, road, public transit) and ask for a best integrated journey between two points. The main challenge is that a seemingly optimal journey may have changes between networks that do not reflect the user’s modal preferences. In fact, quickly computing reasonable multimodal routes remains a challenging problem: previous approaches either suffer from poor query performance or their available choices of modal preferences during query time is limited. In this work, we focus on computing exact multimodal journeys that can be restricted by specifying arbitrary modal sequences at query time. For example, a user can say whether he or she wants to only use public transit, prefers to also use a taxi or walking at the beginning or end of the journey, or has no restrictions at all. By carefully adapting node contraction, a common ingredient to many speedup techniques on road networks, we are able to compute point-to-point queries on a continental network combined of cars, railroads, and flights several orders of magnitude faster than Dijkstra’s algorithm. Thereby, we require little space overhead and obtain fast preprocessing times.

Funder

DFG

EU FP7/2007-2013 (DG INFSO.G4-ICT for Transport)

Publisher

Association for Computing Machinery (ACM)

Subject

Theoretical Computer Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ULTRA: Unlimited Transfers for Efficient Multimodal Journey Planning;Transportation Science;2023-11

2. Developing a Heuristic Route Planning Method to Support Seamless Mobility Solutions;Smart Energy for Smart Transport;2023

3. Exploring Public Transport Transfer Opportunities for Pareto Search of Multicriteria Journeys;IEEE Transactions on Intelligent Transportation Systems;2022-12

4. Designing of A* Based Route Recommendation Service for Multimodal Transportation System in Smart Cities;Iranian Journal of Science and Technology, Transactions of Civil Engineering;2022-09-01

5. Traveler-oriented multi-criteria decision support for multimodal itineraries;Transportation Research Part C: Emerging Technologies;2022-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3