Feature-Level Attentive ICF for Recommendation

Author:

Cheng Zhiyong1,Liu Fan2,Mei Shenghan2,Guo Yangyang2,Zhu Lei3,Nie Liqiang2

Affiliation:

1. Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China

2. Shandong University, Qingdao, Shandong, China

3. Shandong Normal University, Jinan, Shandong, China

Abstract

Item-based collaborative filtering (ICF) enjoys the advantages of high recommendation accuracy and ease in online penalization and thus is favored by the industrial recommender systems. ICF recommends items to a target user based on their similarities to the previously interacted items of the user. Great progresses have been achieved for ICF in recent years by applying advanced machine learning techniques (e.g., deep neural networks) to learn the item similarity from data. The early methods simply treat all the historical items equally and recently proposed methods attempt to distinguish the different importance of historical items when recommending a target item. Despite the progress, we argue that those ICF models neglect the diverse intents of users on adopting items (e.g., watching a movie because of the director, leading actors, or the visual effects). As a result, they fail to estimate the item similarity on a finer-grained level to predict the user’s preference to an item, resulting in sub-optimal recommendation. In this work, we propose a general feature-level attention method for ICF models. The key of our method is to distinguish the importance of different factors when computing the item similarity for a prediction. To demonstrate the effectiveness of our method, we design a light attention neural network to integrate both item-level and feature-level attention for neural ICF models. It is model-agnostic and easy-to-implement. We apply it to two baseline ICF models and evaluate its effectiveness on six public datasets. Extensive experiments show the feature-level attention enhanced models consistently outperform their counterparts, demonstrating the potential of differentiating user intents on the feature-level for ICF recommendation models.

Funder

National Natural Science Foundation of China

Young creative team in universities of Shandong Province

Jinan 20 projects in universities

New Artificial Intelligence project towards the integration of education and industry in Qilu University of Technology

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3