Gestures à Go Go

Author:

Leiva Luis A.1,Martín-Albo Daniel1,Plamondon Réjean2

Affiliation:

1. Universitat Politècnica de València, València, Spain

2. École Polytechnique de Montrèal, Montrèal, QC, Canada

Abstract

Training a high-quality gesture recognizer requires providing a large number of examples to enable good performance on unseen, future data. However, recruiting participants, data collection, and labeling, etc., necessary for achieving this goal are usually time consuming and expensive. Thus, it is important to investigate how to empower developers to quickly collect gesture samples for improving UI usage and user experience. In response to this need, we introduce Gestures à Go Go ( g 3), a web service plus an accompanying web application for bootstrapping stroke gesture samples based on the kinematic theory of rapid human movements. The user only has to provide a gesture example once, and g 3 will create a model of that gesture. Then, by introducing local and global perturbations to the model parameters, g 3 generates from tens to thousands of synthetic human-like samples. Through a comprehensive evaluation, we show that synthesized gestures perform equally similar to gestures generated by human users. Ultimately, this work informs our understanding of designing better user interfaces that are driven by gestures.

Funder

Spanish MINECO

FPU scholarship

Spanish MECD as part of the International Excellence Campus program

NSERC-Canada

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Reference75 articles.

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards a Framework for Evaluating Synthetic Surface Gestures;Companion of the16th ACM SIGCHI Symposium on Engineering Interactive Computing Systems;2024-06-24

2. Effective 2D Stroke-based Gesture Augmentation for RNNs;Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems;2023-04-19

3. Synthesis of 3D on-air signatures with the Sigma–Lognormal model;Knowledge-Based Systems;2023-04

4. Real-time crowd formation control in virtual scenes;Simulation Modelling Practice and Theory;2023-01

5. Lognormality: An Open Window on Neuromotor Control;Graphonomics in Human Body Movement. Bridging Research and Practice from Motor Control to Handwriting Analysis and Recognition;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3