Predicting Vulnerable Software Components through Deep Neural Network
Author:
Affiliation:
1. Southern Connecticut State, University, New Haven, US
2. URU Video Inc, New York, US
3. Hebei University of Economics and Business, Shijiazhuang, China
Publisher
ACM Press
Reference21 articles.
1. Y. Pang, X. Xue, and A. S. Namin, "Predicting vulnerable software components through n-gram analysis and statistical feature selection," in 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA). IEEE, 2015, pp. 543--548.
2. J. Schmidhuber, "Deep learning in neural networks: An overview," Neural Networks, vol. 61, pp. 85--117, 2015.
3. G. E. Dahl, D. Yu, L. Deng, and A. Acero, "Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition," IEEE Transactions on Audio, Speech, and Language Processing, vol. 20, no. 1, pp. 30--42, 2012.
4. R. Collobert and J. Weston, "A uni.ed architecture for natural language processing: Deep neural networks with multitask learning," in Proceedings of the 25th international conference on Machine learning. ACM, 2008, pp. 160--167.
5. D. Ciregan, U. Meier, and J. Schmidhuber, "Multi-column deep neural networks for image classification," in Computer Vision and Pa.ern Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012, pp. 3642--3649
Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. System-wide vulnerability of multi-component software;Computers & Industrial Engineering;2024-10
2. Using sum product networks to predict defects in software systems;International Journal of Information Technology;2024-07-18
3. The untold impact of learning approaches on software fault-proneness predictions: an analysis of temporal aspects;Empirical Software Engineering;2024-06-08
4. Vulnerability detection in Java source code using a quantum convolutional neural network with self-attentive pooling, deep sequence, and graph-based hybrid feature extraction;Scientific Reports;2024-03-28
5. A survey on machine learning techniques applied to source code;Journal of Systems and Software;2024-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3