Fashion image classification on mobile phones using layered deep convolutional neural networks

Author:

Hori Kazunori1,Okada Shogo1,Nitta Katsumi1

Affiliation:

1. Tokyo Institute of Technology

Publisher

ACM

Reference11 articles.

1. Apparel Classification with Style

2. Multi-view Nonnegative Matrix Factorization for Clothing Image Characterization

3. Deep domain adaptation for describing people based on fine-grained clothing attributes

4. Djork-Arné Clevert Thomas Unterthiner and Sepp Hochreiter. 2015. Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs). arXiv preprint arXiv:1511.07289 (2015). Djork-Arné Clevert Thomas Unterthiner and Sepp Hochreiter. 2015. Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs). arXiv preprint arXiv:1511.07289 (2015).

5. Kota Hara Vignesh Jagadeesh and Robinson Piramuthu. 2014. Fashion apparel detection: The role of deep convolutional neural network and pose-dependent priors. arXiv preprint arXiv:1411.5319 (2014). Kota Hara Vignesh Jagadeesh and Robinson Piramuthu. 2014. Fashion apparel detection: The role of deep convolutional neural network and pose-dependent priors. arXiv preprint arXiv:1411.5319 (2014).

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CNNRec: Convolutional Neural Network based recommender systems - A survey;Engineering Applications of Artificial Intelligence;2024-07

2. A framework for real-time dress classification in cluttered background images for robust image retrieval;Cognition, Technology & Work;2023-08-19

3. An Automatic System for Identifying and Categorizing Tribal Clothing Based on Convolutional Neural Networks;2022 Fourth International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT);2022-12-26

4. Research on image recognition of ethnic minority clothing based on improved vision transformer;Mathematical Foundations of Computing;2022

5. Cosmetic Products Recommendation Methods for Different Occasions Using Consumer Reviews and Geotagged Tweets;Communications in Computer and Information Science;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3