1. Flow-based generative models for Markov chain Monte Carlo in lattice field theory
2. Ferran Alet , Adarsh Keshav Jeewajee , Maria Bauza Villalonga , Alberto Rodriguez , Tomas Lozano-Perez , and Leslie Kaelbling . 2019 . Graph element networks: adaptive, structured computation and memory . In International Conference on Machine Learning. PMLR, 212--222 . Ferran Alet, Adarsh Keshav Jeewajee, Maria Bauza Villalonga, Alberto Rodriguez, Tomas Lozano-Perez, and Leslie Kaelbling. 2019. Graph element networks: adaptive, structured computation and memory. In International Conference on Machine Learning. PMLR, 212--222.
3. Uri Alon and Eran Yahav . 2020. On the bottleneck of graph neural networks and its practical implications. arXiv preprint arXiv:2006.05205 ( 2020 ). Uri Alon and Eran Yahav. 2020. On the bottleneck of graph neural networks and its practical implications. arXiv preprint arXiv:2006.05205 (2020).
4. Subgraph neural networks;Alsentzer Emily;Advances in Neural Information Processing Systems,2020
5. Peter W Battaglia Jessica B Hamrick Victor Bapst Alvaro Sanchez-Gonzalez Vinicius Zambaldi Mateusz Malinowski Andrea Tacchetti David Raposo Adam Santoro Ryan Faulkner etal 2018. Relational inductive biases deep learning and graph networks. arXiv preprint arXiv:1806.01261 (2018). Peter W Battaglia Jessica B Hamrick Victor Bapst Alvaro Sanchez-Gonzalez Vinicius Zambaldi Mateusz Malinowski Andrea Tacchetti David Raposo Adam Santoro Ryan Faulkner et al. 2018. Relational inductive biases deep learning and graph networks. arXiv preprint arXiv:1806.01261 (2018).