A Data-centric Framework to Endow Graph Neural Networks with Out-Of-Distribution Detection Ability

Author:

Guo Yuxin1ORCID,Yang Cheng1ORCID,Chen Yuluo1ORCID,Liu Jixi1ORCID,Shi Chuan1ORCID,Du Junping1ORCID

Affiliation:

1. Beijing University of Posts and Telecommunications, Beijing, China

Funder

National Natural Science Foundation of China

Publisher

ACM

Reference60 articles.

1. Dario Amodei , Chris Olah , Jacob Steinhardt , Paul Christiano , John Schulman , and Dan Mané . 2016. Concrete problems in AI safety. arXiv preprint arXiv:1606.06565 ( 2016 ). Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. 2016. Concrete problems in AI safety. arXiv preprint arXiv:1606.06565 (2016).

2. Petra Bevandić , Ivan Krevs o , Marin Oršić, and Sinivs a Šegvić. 2018 . Discriminative out-of-distribution detection for semantic segmentation. arXiv preprint arXiv:1808.07703 (2018). Petra Bevandić, Ivan Krevs o, Marin Oršić, and Sinivs a Šegvić. 2018. Discriminative out-of-distribution detection for semantic segmentation. arXiv preprint arXiv:1808.07703 (2018).

3. Protein function prediction via graph kernels

4. Markus M Breunig Hans-Peter Kriegel Raymond T Ng and Jörg Sander. 2000. LOF: identifying density-based local outliers. In SIGMOD. 93--104. Markus M Breunig Hans-Peter Kriegel Raymond T Ng and Jörg Sander. 2000. LOF: identifying density-based local outliers. In SIGMOD. 93--104.

5. Ming Chen Zhewei Wei Zengfeng Huang Bolin Ding and Yaliang Li. 2020b. Simple and deep graph convolutional networks. In ICML. PMLR 1725--1735. Ming Chen Zhewei Wei Zengfeng Huang Bolin Ding and Yaliang Li. 2020b. Simple and deep graph convolutional networks. In ICML. PMLR 1725--1735.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Graph Intelligence with Large Language Models and Prompt Learning;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

2. Optimizing OOD Detection in Molecular Graphs: A Novel Approach with Diffusion Models;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3