Communication Efficient and Differentially Private Logistic Regression under the Distributed Setting

Author:

Bao Ergute1ORCID,Gao Dawei2ORCID,Xiao Xiaokui1ORCID,Li Yaliang3ORCID

Affiliation:

1. National University of Singapore, Singapore, Singapore

2. Alibaba Group, Beijing, China

3. Alibaba Group, Bellevue, USA

Funder

National Research Foundation Singapore

Publisher

ACM

Reference67 articles.

1. Martín Abadi Andy Chu Ian J. Goodfellow H. Brendan McMahan Ilya Mironov Kunal Talwar and Li Zhang. 2016. Deep Learning with Differential Privacy. In CCS. 308--318. Martín Abadi Andy Chu Ian J. Goodfellow H. Brendan McMahan Ilya Mironov Kunal Talwar and Li Zhang. 2016. Deep Learning with Differential Privacy. In CCS. 308--318.

2. Reza Abbasi Asl and Bin Yu . 2021 . Structural Compression of Convolutional Neural Networks with Applications in Interpretability . Frontiers in Big Data , Vol. 4 (08 2021). Reza Abbasi Asl and Bin Yu. 2021. Structural Compression of Convolutional Neural Networks with Applications in Interpretability. Frontiers in Big Data, Vol. 4 (08 2021).

3. Naman Agarwal , Peter Kairouz , and Ziyu Liu . 2021. The Skellam Mechanism for Differentially Private Federated Learning . In NeurIPS 2021 . 5052--5064. Naman Agarwal, Peter Kairouz, and Ziyu Liu. 2021. The Skellam Mechanism for Differentially Private Federated Learning. In NeurIPS 2021. 5052--5064.

4. Naman Agarwal , Ananda Theertha Suresh , Felix Yu, Sanjiv Kumar, and H. Brendan McMahan. 2018 . CpSGD: Communication- Efficient and Differentially-Private Distributed SGD. In NeurIPS. 7575--7586. Naman Agarwal, Ananda Theertha Suresh, Felix Yu, Sanjiv Kumar, and H. Brendan McMahan. 2018. CpSGD: Communication-Efficient and Differentially-Private Distributed SGD. In NeurIPS. 7575--7586.

5. Apple. 2016. Differential Privacy Overview. https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf Retrieved December 21, 2020 from Apple. 2016. Differential Privacy Overview. https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf Retrieved December 21, 2020 from

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3