Personalized Federated Learning with Parameter Propagation

Author:

Wu Jun1ORCID,Bao Wenxuan1ORCID,Ainsworth Elizabeth2ORCID,He Jingrui1ORCID

Affiliation:

1. University of Illinois at Urbana-Champaign, Champaign, IL, USA

2. USDA-ARS Global Change and Photosynthesis Research Unit & University of Illinois at Urbana-Champaign, Champaign, IL, USA

Funder

National Science Foundation under Award No. IIS-1947203, IIS-2117902, IIS-2137468

Agriculture and Food Research Initiative (AFRI) grant no. 2020-67021-32799/project accession no.1024178 from the USDA National Institute of Food and Agriculture

Publisher

ACM

Reference48 articles.

1. Manoj Ghuhan Arivazhagan , Vinay Aggarwal , Aaditya Kumar Singh, and Sunav Choudhary . 2019 . Federated learning with personalization layers. arXiv preprint arXiv:1912.00818 (2019). Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary. 2019. Federated learning with personalization layers. arXiv preprint arXiv:1912.00818 (2019).

2. Shai Ben-David , John Blitzer , Koby Crammer , Alex Kulesza , Fernando Pereira , and Jennifer Wortman Vaughan . 2010. A theory of learning from different domains. Machine learning 79 ( 2010 ), 151--175. Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman Vaughan. 2010. A theory of learning from different domains. Machine learning 79 (2010), 151--175.

3. FL-QSAR: a federated learning-based QSAR prototype for collaborative drug discovery

4. FedHealth: A Federated Transfer Learning Framework for Wearable Healthcare

5. Yae Jee Cho , Divyansh Jhunjhunwala , Tian Li , Virginia Smith , and Gauri Joshi . 2022. To Federate or Not To Federate: Incentivizing Client Participation in Federated Learning. arXiv preprint arXiv:2205.14840 ( 2022 ). Yae Jee Cho, Divyansh Jhunjhunwala, Tian Li, Virginia Smith, and Gauri Joshi. 2022. To Federate or Not To Federate: Incentivizing Client Participation in Federated Learning. arXiv preprint arXiv:2205.14840 (2022).

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Distributional Network of Networks for Modeling Data Heterogeneity;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

2. Semi-global sequential recommendation via EM-like federated training;Expert Systems with Applications;2024-08

3. FedLD: Federated Learning for Privacy-Preserving Collaborative Landslide Detection;IEEE Geoscience and Remote Sensing Letters;2024

4. Federated Discriminative Representation Learning for Image Classification;IEEE Transactions on Neural Networks and Learning Systems;2024

5. Trustworthy Transfer Learning: Transferability and Trustworthiness;Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2023-08-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3