1. Uri Alon and Eran Yahav . 2020. On the bottleneck of graph neural networks and its practical implications. arXiv preprint arXiv:2006.05205 ( 2020 ). Uri Alon and Eran Yahav. 2020. On the bottleneck of graph neural networks and its practical implications. arXiv preprint arXiv:2006.05205 (2020).
2. Tal Ben-Nun , Alice Shoshana Jakobovits, and Torsten Hoefler . 2018 . Neural code comprehension: A learnable representation of code semantics. Advances in Neural Information Processing Systems , Vol. 31 (2018). Tal Ben-Nun, Alice Shoshana Jakobovits, and Torsten Hoefler. 2018. Neural code comprehension: A learnable representation of code semantics. Advances in Neural Information Processing Systems, Vol. 31 (2018).
3. Xavier Bresson and Thomas Laurent . 2017. Residual gated graph convnets. arXiv preprint arXiv:1711.07553 ( 2017 ). Xavier Bresson and Thomas Laurent. 2017. Residual gated graph convnets. arXiv preprint arXiv:1711.07553 (2017).
4. Michael M. Bronstein , Joan Bruna , Taco Cohen , and Petar Veličković . 2021. Geometric Deep Learning: Grids , Groups, Graphs, Geodesics, and Gauges. arXiv:2104.13478 (May 2021 ). http://arxiv.org/abs/2104.13478 Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. 2021. Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges. arXiv:2104.13478 (May 2021). http://arxiv.org/abs/2104.13478
5. Rickard Brüel-Gabrielsson , Mikhail Yurochkin , and Justin Solomon . 2022. Rewiring with Positional Encodings for Graph Neural Networks. arXiv:2201.12674 (Oct 2022 ). http://arxiv.org/abs/2201.12674 Rickard Brüel-Gabrielsson, Mikhail Yurochkin, and Justin Solomon. 2022. Rewiring with Positional Encodings for Graph Neural Networks. arXiv:2201.12674 (Oct 2022). http://arxiv.org/abs/2201.12674