Node Classification Beyond Homophily: Towards a General Solution

Author:

Xu Zhe1ORCID,Chen Yuzhong2ORCID,Zhou Qinghai1ORCID,Wu Yuhang2ORCID,Pan Menghai2ORCID,Yang Hao2ORCID,Tong Hanghang1ORCID

Affiliation:

1. University of Illinois Urbana-Champaign, Champaign, USA

2. Visa Research, Palo Alto, USA

Funder

NSF

DARPA

NIFA

DHS

ARO

Publisher

ACM

Reference49 articles.

1. Muhammet Balcilar Guillaume Renton Pierre Héroux Benoit Gaüzère Sébastien Adam and Paul Honeine. 2021. Analyzing the expressive power of graph neural networks in a spectral perspective. In ICLR. Muhammet Balcilar Guillaume Renton Pierre Héroux Benoit Gaüzère Sébastien Adam and Paul Honeine. 2021. Analyzing the expressive power of graph neural networks in a spectral perspective. In ICLR.

2. Filippo Maria Bianchi Daniele Grattarola and Cesare Alippi. 2020. Spectral clustering with graph neural networks for graph pooling. In ICML. Filippo Maria Bianchi Daniele Grattarola and Cesare Alippi. 2020. Spectral clustering with graph neural networks for graph pooling. In ICML.

3. Deyu Bo Xiao Wang Chuan Shi and Huawei Shen. 2021. Beyond Low-frequency Information in Graph Convolutional Networks. In AAAI. Deyu Bo Xiao Wang Chuan Shi and Huawei Shen. 2021. Beyond Low-frequency Information in Graph Convolutional Networks. In AAAI.

4. Aleksandar Bojchevski and Stephan Günnemann. 2018. Deep Gaussian Embedding of Graphs: Unsupervised Inductive Learning via Ranking. In ICLR. Aleksandar Bojchevski and Stephan Günnemann. 2018. Deep Gaussian Embedding of Graphs: Unsupervised Inductive Learning via Ranking. In ICLR.

5. Lei Chen Zhengdao Chen and Joan Bruna. 2021. On Graph Neural Networks versus Graph-Augmented MLPs. In ICLR. Lei Chen Zhengdao Chen and Joan Bruna. 2021. On Graph Neural Networks versus Graph-Augmented MLPs. In ICLR.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AGS-GNN: Attribute-guided Sampling for Graph Neural Networks;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

2. All in One and One for All: A Simple yet Effective Method towards Cross-domain Graph Pretraining;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

3. Learning Node Abnormality with Weak Supervision;Proceedings of the 32nd ACM International Conference on Information and Knowledge Management;2023-10-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3