Fairness in Graph Machine Learning: Recent Advances and Future Prospectives

Author:

Dong Yushun1ORCID,Kose Oyku Deniz2ORCID,Shen Yanning2ORCID,Li Jundong1ORCID

Affiliation:

1. University of Virginia, Charlottesville, USA

2. University of California, Irvine, Irvine, CA, USA

Publisher

ACM

Reference26 articles.

1. Chirag Agarwal Himabindu Lakkaraju and Marinka Zitnik. 2021. Towards a unified framework for fair and stable graph representation learning. In UAI. Chirag Agarwal Himabindu Lakkaraju and Marinka Zitnik. 2021. Towards a unified framework for fair and stable graph representation learning. In UAI.

2. Mario Arduini , Lorenzo Noci , Federico Pirovano , Ce Zhang , Yash Raj Shrestha, and Bibek Paudel . 2020 . Adversarial Learning for Debiasing Knowledge Graph Embeddings. In KDD. Mario Arduini, Lorenzo Noci, Federico Pirovano, Ce Zhang, Yash Raj Shrestha, and Bibek Paudel. 2020. Adversarial Learning for Debiasing Knowledge Graph Embeddings. In KDD.

3. Yushun Dong Jian Kang Hanghang Tong and Jundong Li. 2021. Individual fairness for graph neural networks: A ranking based approach. In KDD. Yushun Dong Jian Kang Hanghang Tong and Jundong Li. 2021. Individual fairness for graph neural networks: A ranking based approach. In KDD.

4. Yushun Dong , Ninghao Liu , Brian Jalaian , and Jundong Li . 2022 a. Edits: Modeling and mitigating data bias for graph neural networks. In WWW. Yushun Dong, Ninghao Liu, Brian Jalaian, and Jundong Li. 2022a. Edits: Modeling and mitigating data bias for graph neural networks. In WWW.

5. Yushun Dong , Jing Ma , Chen Chen , and Jundong Li. 2022b. Fairness in Graph Mining: A Survey. arXiv preprint arXiv:2204.09888 ( 2022 ). Yushun Dong, Jing Ma, Chen Chen, and Jundong Li. 2022b. Fairness in Graph Mining: A Survey. arXiv preprint arXiv:2204.09888 (2022).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PyGDebias: A Python Library for Debiasing in Graph Learning;Companion Proceedings of the ACM Web Conference 2024;2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3