1. Amr Alexandari , Anshul Kundaje , and Avanti Shrikumar . 2020 . Maximum likelihood with bias-corrected calibration is hard-to-beat at label shift adaptation . In International Conference on Machine Learning. PMLR, 222--232 . Amr Alexandari, Anshul Kundaje, and Avanti Shrikumar. 2020. Maximum likelihood with bias-corrected calibration is hard-to-beat at label shift adaptation. In International Conference on Machine Learning. PMLR, 222--232.
2. Kamyar Azizzadenesheli , Anqi Liu , Fanny Yang , and Animashree Anandkumar . 2019. Regularized learning for domain adaptation under label shifts. arXiv preprint arXiv:1903.09734 ( 2019 ). Kamyar Azizzadenesheli, Anqi Liu, Fanny Yang, and Animashree Anandkumar. 2019. Regularized learning for domain adaptation under label shifts. arXiv preprint arXiv:1903.09734 (2019).
3. Yong Bai , Yu-Jie Zhang , Peng Zhao , Masashi Sugiyama , and Zhi-Hua Zhou . 2022. Adapting to Online Label Shift with Provable Guarantees. arXiv preprint arXiv:2207.02121 ( 2022 ). Yong Bai, Yu-Jie Zhang, Peng Zhao, Masashi Sugiyama, and Zhi-Hua Zhou. 2022. Adapting to Online Label Shift with Provable Guarantees. arXiv preprint arXiv:2207.02121 (2022).
4. CAN
5. Discriminative learning under covariate shift;Bickel Steffen;Journal of Machine Learning Research,2009