Encode When Necessary

Author:

Wang Shuai1,Kim Song Min2,Yin Zhimeng1,He Tian1

Affiliation:

1. University of Minnesota, Minneapolis, USA

2. George Mason University

Abstract

Recent research has shown that network coding has great potential to improve network performance in wireless communication. The performance of network coding in real-world scenarios, however, varies dramatically. It is reported that network coding brings negligible improvements but extra coding overhead in some scenarios. In this article, for the first time, we analyze the impact of link correlation on network coding and quantify the coding benefits. We propose correlated coding, which encodes packets only when performance improvement is achieved. Correlated coding uses only one-hop information, which makes it work in a fully distributed manner and introduces minimal communication overhead. The highlight of the design is its broad applicability and effectiveness. We implement the design with four broadcast protocols and three unicast protocols, and we evaluate them extensively on one 802.11 testbed and three 802.15.4 testbeds. The experimental results show that (i) more coding operations do not lead to fewer transmissions, and (ii) compared to existing network coding protocols, the number of transmissions is reduced with lower coding overhead.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spectrum Efficient Communication for Heterogeneous IoT Networks;IEEE Transactions on Network Science and Engineering;2022-11-01

2. METHODOLOGY OF INCREASING THE RELIABILITY OF VIDEO INFORMATION IN INFOCOMMUNICATION NETWORKS AEROSEGMENT;Radio Electronics, Computer Science, Control;2022-10-17

3. Technology of formation and coding of marker arrays of sequences of clustered transformants of sufficiently informative image segments;2022 IEEE 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET);2022-02-22

4. Analysis of Requirements for Video Information Coding Technologies for UAV Information Resources;2022 IEEE 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET);2022-02-22

5. Method of Binary Polyadic Sequences Structural Coding;2022 IEEE 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET);2022-02-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3