A Data-driven Framework for Long-Range Aircraft Conflict Detection and Resolution

Author:

Ayhan Samet1,Costas Pablo2,Samet Hanan1

Affiliation:

1. University of Maryland, College Park, MD

2. Boeing Research 8 Technology Europe, Madrid, Spain

Abstract

At the present time, there is no mechanism for Air Navigation Service Providers (ANSPs) to probe new flight plans filed by the Airlines Operation Centers (AOCs) against the existing approved flight plans to see if they are likely to cause conflicts or bring sector traffic densities beyond control. In the current Air Traffic Control (ATC) operations, aircraft conflicts and sector traffic densities are resolved tactically, increasing workload and leading to potential safety risks and loss of capacity and efficiency. We propose a novel Data-driven Framework to address a long-range aircraft conflict detection and resolution (CDR) problem. Given a set of predicted trajectories, the framework declares a conflict when a protected zone of an aircraft on its trajectory is infringed upon by another aircraft. The framework resolves the conflict by prescribing an alternative solution that is optimized by perturbing at least one of the trajectories involved in the conflict. To achieve this, the framework learns from descriptive patterns of historical trajectories and pertinent weather observations and builds a Hidden Markov Model (HMM). Using a variant of the Viterbi algorithm, the framework avoids the airspace volume in which the conflict is detected and generates a new optimal trajectory that is conflict free. The key concept upon which the framework is built is the assumption that the airspace is nothing more than a horizontally and vertically concatenated set of spatio-temporal data cubes where each cube is considered as an atomic unit. We evaluate our framework using real trajectory datasets with pertinent weather observations from two continents and demonstrate its effectiveness for strategic CDR.

Funder

NSF

European Union's Horizon 2020 Research and Innovation Programme

SESAR Joint Undertaking

Publisher

Association for Computing Machinery (ACM)

Subject

Discrete Mathematics and Combinatorics,Geometry and Topology,Computer Science Applications,Modelling and Simulation,Information Systems,Signal Processing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3