Investment and Risk Management with Online News and Heterogeneous Networks

Author:

Ang Gary1ORCID,Lim Ee-Peng1ORCID

Affiliation:

1. Singapore Management University, Stamford Road, Singapore

Abstract

Stock price movements in financial markets are influenced by large volumes of news from diverse sources on the web, e.g., online news outlets, blogs, social media. Extracting useful information from online news for financial tasks, e.g., forecasting stock returns or risks, is, however, challenging due to the low signal-to-noise ratios of such online information. Assessing the relevance of each news article to the price movements of individual stocks is also difficult, even for human experts. In this article, we propose the Guided Global-Local Attention-based Multimodal Heterogeneous Network (GLAM) model, which comprises novel attention-based mechanisms for multimodal sequential and graph encoding, a guided learning strategy, and a multitask training objective. GLAM uses multimodal information, heterogeneous relationships between companies and leverages significant local responses of individual stock prices to online news to extract useful information from diverse global online news relevant to individual stocks for multiple forecasting tasks. Our extensive experiments with multiple datasets show that GLAM outperforms other state-of-the-art models on multiple forecasting tasks and investment and risk management application case-studies.

Funder

National Research Foundation, Singapore

Monetary Authority of Singapore Postgraduate Scholarship

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Reference61 articles.

1. Learning knowledge-enriched company embeddings for investment management

2. Shaojie Bai J. Zico Kolter and Vladlen Koltun. 2018. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. Computing Research Repository (CoRR) abs/1803.01271 (2018).

3. Patient Subtyping via Time-Aware LSTM Networks

4. Curriculum learning

5. Generalized autoregressive conditional heteroskedasticity

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3