Topic taxonomy adaptation for group profiling

Author:

Tang Lei1,Liu Huan1,Zhang Jianping2,Agarwal Nitin1,Salerno John J.3

Affiliation:

1. Arizona State University, Tempe, AZ

2. MITRE, McLean, VA

3. Air Force Research Laboratory, Rome, NY

Abstract

A topic taxonomy is an effective representation that describes salient features of virtual groups or online communities. A topic taxonomy consists of topic nodes. Each internal node is defined by its vertical path (i.e., ancestor and child nodes) and its horizonal list of attributes (or terms). In a text-dominant environment, a topic taxonomy can be used to flexibly describe a group's interests with varying granularity. However, the stagnant nature of a taxonomy may fail to timely capture the dynamic change of a group's interest. This article addresses the problem of how to adapt a topic taxonomy to the accumulated data that reflects the change of a group's interest to achieve dynamic group profiling. We first discuss the issues related to topic taxonomy. We next formulate taxonomy adaptation as an optimization problem to find the taxonomy that best fits the data. We then present a viable algorithm that can efficiently accomplish taxonomy adaptation. We conduct extensive experiments to evaluate our approach's efficacy for group profiling, compare the approach with some alternatives, and study its performance for dynamic group profiling. While pointing out various applications of taxonomy adaption, we suggest some future work that can take advantage of burgeoning Web 2.0 services for online targeted marketing, counterterrorism in connecting dots, and community tracking.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Identification of Salient Attributes in Social Network: A Data Mining Approach;Data Science and Analytics;2020

2. Social Network Analysis Based on Topic Model with Temporal Factor;International Journal of Knowledge and Systems Science;2018-01

3. CRS;Student Engagement and Participation;2018

4. Centrality-Based Group Profiling: A Comparative Study in Co-authorship Networks;New Generation Computing;2017-11-21

5. Advanced topic modeling for social business intelligence;Information Systems;2015-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3