On the limits of resolution and visual angle in visualization

Author:

Healey Christopher G.1,Sawant Amit P.2

Affiliation:

1. North Carolina State University, Raleigh, NC

2. North Carolina State University, NC

Abstract

This article describes a perceptual level-of-detail approach for visualizing data. Properties of a dataset that cannot be resolved in the current display environment need not be shown, for example, when too few pixels are used to render a data element, or when the element's subtended visual angle falls below the acuity limits of our visual system. To identify these situations, we asked: (1) What type of information can a human user perceive in a particular display environment? (2) Can we design visualizations that control what they represent relative to these limits? and (3) Is it possible to dynamically update a visualization as the display environment changes, to continue to effectively utilize our perceptual abilities? To answer these questions, we conducted controlled experiments that identified the pixel resolution and subtended visual angle needed to distinguish different values of luminance, hue, size, and orientation. This information is summarized in a perceptual display hierarchy, a formalization describing how many pixels— resolution —and how much physical area on a viewer's retina— visual angle —is required for an element's visual properties to be readily seen. We demonstrate our theoretical results by visualizing historical climatology data from the International Panel for Climate Change.

Publisher

Association for Computing Machinery (ACM)

Subject

Experimental and Cognitive Psychology,General Computer Science,Theoretical Computer Science

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Visual Analytics for NASCAR Motorsports;Journal of Data Science;2024

2. Believing is seeing – the deceptive influence of bias in quantitative microscopy;Journal of Cell Science;2024-01-01

3. Application of Contrast Driven Color-Class Assignment to Four Categorical Data Visualization Diagrams;Communications in Computer and Information Science;2024

4. AQUA: A Framework for Spatiotemporal Analysis and Visualizations of Water Quality Data at Scale;2023 IEEE International Conference on Big Data (BigData);2023-12-15

5. Studies of Part-to-Whole Glanceable Visualizations on Smartwatch Faces;2023 IEEE 16th Pacific Visualization Symposium (PacificVis);2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3