Attacking DoH and ECH: Does Server Name Encryption Protect Users’ Privacy?

Author:

Trevisan Martino1ORCID,Soro Francesca2ORCID,Mellia Marco3ORCID,Drago Idilio4ORCID,Morla Ricardo5ORCID

Affiliation:

1. University of Trieste, Trieste, Italy

2. Austrian Institute of Technology, Seibersdorf, Austria

3. Politecnico di Torino, Torino, Italy

4. Università di Torino, Torino, Italy

5. University of Porto, Porto, Portugal

Abstract

Privacy on the Internet has become a priority, and several efforts have been devoted to limit the leakage of personal information. Domain names, both in the TLS Client Hello and DNS traffic, are among the last pieces of information still visible to an observer in the network. The Encrypted Client Hello extension for TLS, DNS over HTTPS or over QUIC protocols aim to further increase network confidentiality by encrypting the domain names of the visited servers. In this article, we check whether an attacker able to passively observe the traffic of users could still recover the domain name of websites they visit even if names are encrypted. By relying on large-scale network traces, we show that simplistic features and off-the-shelf machine learning models are sufficient to achieve surprisingly high precision and recall when recovering encrypted domain names. We consider three attack scenarios, i.e., recovering the per-flow name, rebuilding the set of visited websites by a user, and checking which users visit a given target website. We next evaluate the efficacy of padding-based mitigation, finding that all three attacks are still effective, despite resources wasted with padding. We conclude that current proposals for domain encryption may produce a false sense of privacy, and more robust techniques should be envisioned to offer protection to end users.

Funder

European Union’s Horizon 2020

SmartData@PoliTO center for Big Data technologies

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Method for Generating Malware Countermeasure Samples Based on Pixel Attention Mechanism;KSII Transactions on Internet and Information Systems;2024-02-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3