Improved Scalability of Demand-Aware Datacenter Topologies With Minimal Route Lengths and Congestion

Author:

Pacut Maciej1,Dai Wenkai1,Labbe Alexandre2,Foerster Klaus-Tycho3,Schmid Stefan1

Affiliation:

1. University of Vienna, Vienna, Austria

2. Institut Polytechnique de Paris ENSTA Paris, Paris, France

3. TU Dortmund, Dortmund, Germany

Abstract

The performance of more and more cloud-based applications critically depends on the performance of the interconnecting datacenter network. Emerging reconfigurable datacenter networks have the potential to provide an unprecedented throughput by dynamically reconfiguring their topology in a demand-aware manner. This paper studies the algorithmic problem of how to design low-degree and hence scalable datacenter networks optimized toward the current traffic they serve. Our main contribution is a novel network design which provides asymptotically minimal route lengths and congestion. In comparison to prior work, we reduce the degree requirements by a factor of four for sparse demand matrices. We further show the problem to be already NP-hard for tree-shaped demands, but permits a 2-approximation on the route lengths and a 6-approximation for congestion. We further report on a small empirical study on Facebook traces.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Reference30 articles.

1. Minimum linear arrangements;Andrade R.;Elect. Notes in Discr. Mathematics,2017

2. C. Avin Demand-aware network designs of bounded degree . In Proc. DISC , 2017 . C. Avin et al. Demand-aware network designs of bounded degree. In Proc. DISC, 2017.

3. Demand-Aware Network Design with Minimal Congestion and Route Lengths

4. C. Avin Demand-aware network designs of bounded degree. Distributed Comput., 33(3--4):311--325 , 2020 . C. Avin et al. Demand-aware network designs of bounded degree. Distributed Comput., 33(3--4):311--325, 2020.

5. On the Complexity of Traffic Traces and Implications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3