Metric Learning for Estimating Psychological Similarities

Author:

Xu Jun-Ming1,Zhu Xiaojin1,Rogers Timothy T.1

Affiliation:

1. University of Wisconsin-Madison

Abstract

An important problem in cognitive psychology is to quantify the perceived similarities between stimuli. Previous work attempted to address this problem with multidimensional scaling (MDS) and its variants. However, there are several shortcomings of the MDS approaches. We propose Yada, a novel general metric-learning procedure based on two-alternative forced-choice behavioral experiments. Our method learns forward and backward nonlinear mappings between an objective space in which the stimuli are defined by the standard feature vector representation and a subjective space in which the distance between a pair of stimuli corresponds to their perceived similarity. We conduct experiments on both synthetic and real human behavioral datasets to assess the effectiveness of Yada. The results show that Yada outperforms several standard embedding and metric-learning algorithms, both in terms of likelihood and recovery error.

Funder

Air Force Office of Scientific Research

Division of Information and Intelligent Systems

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Reference27 articles.

1. Integrating constraints and metric learning in semi-supervised clustering

2. Borg I. and Groenen P. J. F. 2005. Modern Multidimensional Scaling: Theory and Applications 2nd Ed. Springer New York NY. Borg I. and Groenen P. J. F. 2005. Modern Multidimensional Scaling: Theory and Applications 2nd Ed. Springer New York NY.

3. Information-theoretic metric learning

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3