Mining Travel Patterns from Geotagged Photos

Author:

Zheng Yan-Tao1,Zha Zheng-Jun2,Chua Tat-Seng2

Affiliation:

1. Institute for Infocomm Research, Singapore

2. National University of Singapore

Abstract

Recently, the phenomenal advent of photo-sharing services, such as Flickr and Panoramio, have led to volumous community-contributed photos with text tags, timestamps, and geographic references on the Internet. The photos, together with their time- and geo-references, become the digital footprints of photo takers and implicitly document their spatiotemporal movements. This study aims to leverage the wealth of these enriched online photos to analyze people’s travel patterns at the local level of a tour destination. Specifically, we focus our analysis on two aspects: (1) tourist movement patterns in relation to the regions of attractions (RoA), and (2) topological characteristics of travel routes by different tourists. To do so, we first build a statistically reliable database of travel paths from a noisy pool of community-contributed geotagged photos on the Internet. We then investigate the tourist traffic flow among different RoAs by exploiting the Markov chain model. Finally, the topological characteristics of travel routes are analyzed by performing a sequence clustering on tour routes. Testings on four major cities demonstrate promising results of the proposed system.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 170 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unveiling tourist typology: using online reviews and LDA to understand motivations for visiting Kyoto's prominent temples;International Journal of Tourism Cities;2024-09-12

2. Generic Semantic Trajectory Data Modelling Approach based on Ontologies;Journal of Information & Knowledge Management;2024-08-03

3. A Location Recommendation Model Based on User Behavior and Sequence Influence;Lecture Notes in Computer Science;2024

4. Recommendation of Tourist Attractions and Route Based on Social Network Data Mining;2023 IEEE International Conference on Electrical, Automation and Computer Engineering (ICEACE);2023-12-29

5. Inferring Affective Experience from the Big Picture Metaphor: A Two-dimensional Visual Breadth Model;2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW);2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3