Higher reliability redundant disk arrays

Author:

Thomasian Alexander1,Blaum Mario2

Affiliation:

1. Thomasian and Associates, Pleasantville, NY

2. Universidad Complutense de Madrid (UCM), Madrid, Spain

Abstract

Parity is a popular form of data protection in redundant arrays of inexpensive/independent disks (RAID) . RAID5 dedicates one out of N disks to parity to mask single disk failures, that is, the contents of a block on a failed disk can be reconstructed by exclusive-ORing the corresponding blocks on surviving disks. RAID5 can mask a single disk failure, and it is vulnerable to data loss if a second disk failure occurs. The RAID5 rebuild process systematically reconstructs the contents of a failed disk on a spare disk, returning the system to its original state, but the rebuild process may be unsuccessful due to unreadable sectors. This has led to two disk failure tolerant arrays (2DFTs) , such as RAID6 based on Reed-Solomon (RS) codes. EVENODD, RDP (Row-Diagonal-Parity), the X-code, and RM2 (Row-Matrix) are 2DFTs with parity coding. RM2 incurs a higher level of redundancy than two disks, while the X-code is limited to a prime number of disks. RDP is optimal with respect to the number of XOR operations at the encoding, but not for short write operations. For small symbol sizes EVENODD and RDP have the same disk access pattern as RAID6, while RM2 and the X-code incur a high recovery cost with two failed disks. We describe variations to RAID5 and RAID6 organizations, including clustered RAID, different methods to update parities, rebuild processing, disk scrubbing to eliminate sector errors, and the intra-disk redundancy (IDR) method to deal with sector errors. We summarize the results of recent studies of failures in hard disk drives. We describe Markov chain reliability models to estimate RAID mean time to data loss (MTTDL) taking into account sector errors and the effect of disk scrubbing. Numerical results show that RAID5 plus IDR attains the same MTTDL level as RAID6, while incurring a lower performance penalty. We conclude with a survey of analytic and simulation studies of RAID performance and tools and benchmarks for RAID performance evaluation.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Elastic RAID: Implementing RAID over SSDs with Built-in Transparent Compression;Proceedings of the 16th ACM International Conference on Systems and Storage;2023-06-05

2. Reliability Evaluation of Erasure-coded Storage Systems with Latent Errors;ACM Transactions on Storage;2023-01-11

3. Bibliography;Storage Systems;2022

4. Heterogeneous Disk Arrays - HDAs;Storage Systems;2022

5. Coding for multiple disk failures;Storage Systems;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3