Acceleration of Tensor-Product Operations with Tensor Cores

Author:

Cui Cu1ORCID

Affiliation:

1. IWR, Heidelberg University, Heidelberg, Germany

Abstract

In this paper, we explore the acceleration of tensor product operations in finite element methods, leveraging the computational power of the NVIDIA A100 GPU Tensor Cores. We provide an accessible overview of the necessary mathematical background and discuss our implementation strategies. Our study focuses on two common programming approaches for NVIDIA Tensor Cores: the C++ Warp Matrix Functions in nvcuda::wmma and the inline Parallel Thread Execution (PTX) instructions mma.sync.aligned . A significant focus is placed on the adoption of the versatile inline PTX instructions combined with a conflict-free shared memory access pattern, a key to unlocking superior performance. When benchmarked against traditional CUDA Cores, our approach yields a remarkable 2.3-fold increase in double precision performance, achieving 8 TFLOPS/s—45% of the theoretical maximum. Furthermore, in half-precision computations, numerical experiments demonstrate a fourfold enhancement in solving the Poisson equation using the flexible GMRES (FGMRES) method, preconditioned by a multigrid method in 3D. This is achieved while maintaining the same discretization error as observed in double precision computations. These results highlight the considerable benefits of using Tensor Cores for finite element operators with tensor products, achieving an optimal balance between computational speed and precision.

Publisher

Association for Computing Machinery (ACM)

Reference49 articles.

1. GPU algorithms for Efficient Exascale Discretizations

2. SIAM journal on numerical analysis 19, 4;Arnold N,1982

3. SIAM journal on numerical analysis 39, 5;Arnold N,2002

4. Number 294 in Pitman research notes in mathematics series;Bramble H

5. Achi Brandt and Oren E Livne. 2011. Multigrid Techniques. Society for Industrial and Applied Mathematics.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3