Post-copy live migration of virtual machines

Author:

Hines Michael R.1,Deshpande Umesh1,Gopalan Kartik1

Affiliation:

1. Binghamton University (SUNY)

Abstract

We present the design, implementation, and evaluation of post-copy based live migration for virtual machines (VMs) across a Gigabit LAN. Post-copy migration defers the transfer of a VM's memory contents until after its processor state has been sent to the target host. This deferral is in contrast to the traditional pre-copy approach, which first copies the memory state over multiple iterations followed by a final transfer of the processor state. The post-copy strategy can provide a "win-win" by reducing total migration time while maintaining the liveness of the VM during migration. We compare post-copy extensively against the traditional pre-copy approach on the Xen Hypervisor. Using a range of VM workloads we show that post-copy improves several metrics including pages transferred, total migration time, and network overhead. We facilitate the use of post-copy with adaptive prepaging techniques to minimize the number of page faults across the network. We propose different prepaging strategies and quantitatively compare their effectiveness in reducing network-bound page faults. Finally, we eliminate the transfer of free memory pages in both pre-copy and post-copy through a dynamic self-ballooning (DSB) mechanism. DSB periodically reclaims free pages from a VM and significantly speeds up migration with negligible performance impact on VM workload.

Publisher

Association for Computing Machinery (ACM)

Cited by 231 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Live Data Replication to A Disaster Recovery Site Using XEN Hypervisor;Computer Science, Engineering and Technology;2024-08-13

2. Custom Page Fault Handling With eBPF;Proceedings of the SIGCOMM Workshop on eBPF and Kernel Extensions;2024-08-04

3. Practicable live container migrations in high performance computing clouds: Diskless, iterative, and connection-persistent;Journal of Systems Architecture;2024-07

4. enCloud: Aspect‐oriented trusted service migration on SGX‐enabled cloud VM;Software: Practice and Experience;2024-06-18

5. TimeCloth: Fast Point-in-Time Database Recovery in The Cloud;Companion of the 2024 International Conference on Management of Data;2024-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3