Impact of unreliable devices on stability of quantum computations

Author:

Dasgupta Samudra12ORCID,Humble Travis12ORCID

Affiliation:

1. Quantum Science Center, Oak Ridge National Laboratory, Oak Ridge, United States

2. Bredesen Center, University of Tennessee Knoxville College of Engineering, Knoxville, United States

Abstract

Noisy intermediate-scale quantum (NISQ) devices are valuable platforms for testing the tenets of quantum computing, but these devices are susceptible to errors arising from de-coherence, leakage, cross-talk and other sources of noise. This raises concerns regarding the stability of results when using NISQ devices since strategies for mitigating errors generally require well-characterized and stationary error models. Here, we quantify the reliability of NISQ devices by assessing the necessary conditions for generating stable results within a given tolerance. We use similarity metrics derived from device characterization data to derive and validate bounds on the stability of a 5-qubit implementation of the Bernstein-Vazirani algorithm. Simulation experiments conducted with noise data from IBM washington, spanning January 2022 to April 2023, revealed that the reliability metric fluctuated between 41% and 92%. This variation significantly surpasses the maximum allowable threshold of 2.2% needed for stable outcomes. Consequently, the device proved unreliable for consistently reproducing the statistical mean in the context of the Bernstein-Vazirani circuit.

Publisher

Association for Computing Machinery (ACM)

Reference70 articles.

1. Jonathan J Burnett, Andreas Bengtsson, Marco Scigliuzzo, David Niepce, Marina Kudra, Per Delsing, and Jonas Bylander. 2019. Decoherence benchmarking of superconducting qubits. npj Quantum Information 5, 1 (2019), 1–8.

2. Yong Wan, Daniel Kienzler, Stephen D Erickson, Karl H Mayer, Ting Rei Tan, Jenny J Wu, Hilma M Vasconcelos, Scott Glancy, Emanuel Knill, David J Wineland, et al. 2019. Quantum gate teleportation between separated qubits in a trapped-ion processor. Science 364, 6443 (2019), 875–878.

3. Assessment of a Silicon Quantum Dot Spin Qubit Environment via Noise Spectroscopy

4. Quantum Computing Circuits and Devices

5. Theory of fault-tolerant quantum computation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3