Attributed Network Embedding with Micro-Meso Structure

Author:

Li Juan-Hui1,Huang Ling2,Wang Chang-Dong3ORCID,Huang Dong2,Lai Jian-Huang1,Chen Pei1

Affiliation:

1. Sun Yat-sen University, Guangzhou, China

2. South China Agricultural University, Guangzhou, China

3. Sun Yat-sen University, Guangdong Province Key Laboratory of Computational Science, Key Laboratory of Machine Intelligence and Advanced Computing, Ministry of Education, Guangzhou, China

Abstract

Recently, network embedding has received a large amount of attention in network analysis. Although some network embedding methods have been developed from different perspectives, on one hand, most of the existing methods only focus on leveraging the plain network structure, ignoring the abundant attribute information of nodes. On the other hand, for some methods integrating the attribute information, only the lower-order proximities (e.g., microscopic proximity structure) are taken into account, which may suffer if there exists the sparsity issue and the attribute information is noisy. To overcome this problem, the attribute information and mesoscopic community structure are utilized. In this article, we propose a novel network embedding method termed Attributed Network Embedding with Micro-Meso structure, which is capable of preserving both the attribute information and the structural information including the microscopic proximity structure and mesoscopic community structure. In particular, both the microscopic proximity structure and node attributes are factorized by Nonnegative Matrix Factorization (NMF), from which the low-dimensional node representations can be obtained. For the mesoscopic community structure, a community membership strength matrix is inferred by a generative model (i.e., BigCLAM) or modularity from the linkage structure, which is then factorized by NMF to obtain the low-dimensional node representations. The three components are jointly correlated by the low-dimensional node representations, from which two objective functions (i.e., ANEM_B and ANEM_M) can be defined. Two efficient alternating optimization schemes are proposed to solve the optimization problems. Extensive experiments have been conducted to confirm the superior performance of the proposed models over the state-of-the-art network embedding methods.

Funder

NSFC

Guangdong Natural Science Funds for Distinguished Young Scholar

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3