Abstract acceleration of general linear loops

Author:

Jeannet Bertrand1,Schrammel Peter2,Sankaranarayanan Sriram3

Affiliation:

1. INRIA, Grenoble, France

2. University of Oxford, Oxford, United Kingdom

3. University of Colorado, Boulder, CO, USA

Abstract

We present abstract acceleration techniques for computing loop invariants for numerical programs with linear assignments and conditionals. Whereas abstract interpretation techniques typically over-approximate the set of reachable states iteratively, abstract acceleration captures the effect of the loop with a single, non-iterative transfer function applied to the initial states at the loop head. In contrast to previous acceleration techniques, our approach applies to any linear loop without restrictions. Its novelty lies in the use of the Jordan normal form decomposition of the loop body to derive symbolic expressions for the entries of the matrix modeling the effect of η ≥ Ο iterations of the loop. The entries of such a matrix depend on η through complex polynomial, exponential and trigonometric functions. Therefore, we introduces an abstract domain for matrices that captures the linear inequality relations between these complex expressions. This results in an abstract matrix for describing the fixpoint semantics of the loop. Our approach integrates smoothly into standard abstract interpreters and can handle programs with nested loops and loops containing conditional branches. We evaluate it over small but complex loops that are commonly found in control software, comparing it with other tools for computing linear loop invariants. The loops in our benchmarks typically exhibit polynomial, exponential and oscillatory behaviors that present challenges to existing approaches. Our approach finds non-trivial invariants to prove useful bounds on the values of variables for such loops, clearly outperforming the existing approaches in terms of precision while exhibiting good performance.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Solving Conditional Linear Recurrences for Program Verification: The Periodic Case;Proceedings of the ACM on Programming Languages;2023-04-06

2. Full-program induction: verifying array programs sans loop invariants;International Journal on Software Tools for Technology Transfer;2022-09-29

3. Diffy: Inductive Reasoning of Array Programs Using Difference Invariants;Computer Aided Verification;2021

4. Inferring Lower Runtime Bounds for Integer Programs;ACM Transactions on Programming Languages and Systems;2020-09-30

5. Unbounded-Time Safety Verification of Guarded LTI Models with Inputs by Abstract Acceleration;Journal of Automated Reasoning;2020-05-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3