Subcubic Equivalences Between Path, Matrix, and Triangle Problems

Author:

Williams Virginia Vassilevska,Williams R. Ryan

Abstract

We say an algorithm on n × n matrices with integer entries in [− M , M ] (or n -node graphs with edge weights from [− M , M ]) is truly subcubic if it runs in O ( n 3 − δ ċ poly(log M )) time for some δ > 0. We define a notion of subcubic reducibility and show that many important problems on graphs and matrices solvable in O ( n 3 ) time are equivalent under subcubic reductions. Namely, the following weighted problems either all have truly subcubic algorithms, or none of them do: •The all-pairs shortest paths problem on weighted digraphs (APSP). •Detecting if a weighted graph has a triangle of negative total edge weight. •Listing up to n 2.99 negative triangles in an edge-weighted graph. •Finding a minimum weight cycle in a graph of non-negative edge weights. •The replacement paths problem on weighted digraphs. •Finding the second shortest simple path between two nodes in a weighted digraph. •Checking whether a given matrix defines a metric. •Verifying the correctness of a matrix product over the (min, +)-semiring. •Finding a maximum subarray in a given matrix. Therefore, if APSP cannot be solved in n 3−ε time for any ε > 0, then many other problems also need essentially cubic time. In fact, we show generic equivalences between matrix products over a large class of algebraic structures used in optimization, verifying a matrix product over the same structure, and corresponding triangle detection problems over the structure. These equivalences simplify prior work on subcubic algorithms for all-pairs path problems, since it now suffices to give appropriate subcubic triangle detection algorithms. Other consequences of our work are new combinatorial approaches to Boolean matrix multiplication over the (OR,AND)-semiring (abbreviated as BMM). We show that practical advances in triangle detection would imply practical BMM algorithms, among other results. Building on our techniques, we give two improved BMM algorithms: a derandomization of the combinatorial BMM algorithm of Bansal and Williams (FOCS’09), and an improved quantum algorithm for BMM.

Funder

CRA Computing Innovations Fellowship

AFOSR MURI

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Reference77 articles.

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computing Minimum Weight Cycle in the CONGEST Model;Proceedings of the 43rd ACM Symposium on Principles of Distributed Computing;2024-06-17

2. New Graph Decompositions and Combinatorial Boolean Matrix Multiplication Algorithms;Proceedings of the 56th Annual ACM Symposium on Theory of Computing;2024-06-10

3. Faster Combinatorial k-Clique Algorithms;Lecture Notes in Computer Science;2024

4. Shortest distances as enumeration problem;Discrete Applied Mathematics;2024-01

5. Computing Replacement Paths in the CONGEST Model;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3