Reassuring, Misleading, Debunking: Comparing Effects of XAI Methods on Human Decisions

Author:

Humer Christina1ORCID,Hinterreiter Andreas1ORCID,Leichtmann Benedikt2ORCID,Mara Martina1ORCID,Streit Marc1ORCID

Affiliation:

1. Johannes Kepler University Linz, Linz, Austria

2. Johannes Kepler University Linz, Linz, Austria and Ludwig-Maximilians-Universität München, Munich, Germany

Abstract

Trust calibration is essential in AI-assisted decision-making. If human users understand the rationale on which an AI model has made a prediction, they can decide whether they consider this prediction reasonable. Especially in high-risk tasks such as mushroom hunting (where a wrong decision may be fatal), it is important that users make correct choices to trust or overrule the AI. Various explainable AI (XAI) methods are currently being discussed as potentially useful for facilitating understanding and subsequently calibrating user trust. So far, however, it remains unclear which approaches are most effective. In this article, the effects of XAI methods on human AI-assisted decision-making in the high-risk task of mushroom picking were tested. For that endeavor, the effects of (i) Grad-CAM attributions, (ii) nearest-neighbor examples, and (iii) network-dissection concepts were compared in a between-subjects experiment with \(N=501\) participants representing end-users of the system. In general, nearest-neighbor examples improved decision correctness the most. However, varying effects for different task items became apparent. All explanations seemed to be particularly effective when they revealed reasons to (i) doubt a specific AI classification when the AI was wrong and (ii) trust a specific AI classification when the AI was correct. Our results suggest that well-established methods, such as Grad-CAM attribution maps, might not be as beneficial to end users as expected and that XAI techniques for use in real-world scenarios must be chosen carefully.

Publisher

Association for Computing Machinery (ACM)

Reference85 articles.

1. Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz Hardt, and Been Kim. 2018. Sanity checks for saliency maps. In Proceedings of the Advances in Neural Information Processing Systems, Vol. 31. Retrieved from https://papers.nips.cc/paper/2018/hash/294a8ed24b1ad22ec2e7efea049b8737-Abstract.html

2. A survey of visual analytics for Explainable Artificial Intelligence methods

3. Evaluating saliency map explanations for convolutional neural networks

4. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI

5. Network Dissection: Quantifying Interpretability of Deep Visual Representations

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3