Affiliation:
1. BNRist, Department of Computer Science and Technology, Tsinghua University, Beijing, China
2. Cardiff University, UK and Tsinghua University, Beijing, China
Abstract
Convolutionalneural networks (CNNs) have made great breakthroughs in two-dimensional (2D) computer vision. However, their irregular structure makes it hard to harness the potential of CNNs directly on meshes. A subdivision surface provides a hierarchical multi-resolution structure in which each face in a closed 2-manifold triangle mesh is exactly adjacent to three faces. Motivated by these two observations, this article presents
SubdivNet
, an innovative and versatile CNN framework for three-dimensional (3D) triangle meshes with Loop subdivision sequence connectivity. Making an analogy between mesh faces and pixels in a 2D image allows us to present a mesh convolution operator to aggregate local features from nearby faces. By exploiting face neighborhoods, this convolution can support standard 2D convolutional network concepts, e.g., variable kernel size, stride, and dilation. Based on the multi-resolution hierarchy, we make use of pooling layers that uniformly merge four faces into one and an upsampling method that splits one face into four. Thereby, many popular 2D CNN architectures can be easily adapted to process 3D meshes. Meshes with arbitrary connectivity can be remeshed to have Loop subdivision sequence connectivity via self-parameterization, making SubdivNet a general approach. Extensive evaluation and various applications demonstrate SubdivNet’s effectiveness and efficiency.
Funder
Natural Science Foundation of China
Research Grant of Beijing Higher Institution Engineering Research Center
Tsinghua-Tencent Joint Laboratory for Internet Innovation Technology
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Graphics and Computer-Aided Design
Reference88 articles.
1. Adobe.com. 2021. Animate 3D Characters for Games Film and More. Retrieved Janurary 24 2021 from https://www.mixamo.com.
2. SCAPE
3. Federica Bogo, Javier Romero, Matthew Loper, and Michael J. Black. 2014. FAUST: Dataset and evaluation for 3D mesh registration. In CVPR. 3794–3801.
4. Davide Boscaini, Jonathan Masci, Emanuele Rodolà, and Michael M. Bronstein. 2016. Learning shape correspondence with anisotropic convolutional neural networks. In NIPS. 3189–3197.
5. Geometric Deep Learning: Going beyond Euclidean data
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献