SchemaPile: A Large Collection of Relational Database Schemas

Author:

Döhmen Till1ORCID,Geacu Radu1ORCID,Hulsebos Madelon2ORCID,Schelter Sebastian1ORCID

Affiliation:

1. University of Amsterdam, Amsterdam, NL

2. UC Berkeley, Berkeley, USA

Abstract

Access to fine-grained schema information is crucial for understanding how relational databases are designed and used in practice, and for building systems that help users interact with them. Furthermore, such information is required as training data to leverage the potential of large language models (LLMs) for improving data preparation, data integration and natural language querying. Existing single-table corpora such as GitTables provide insights into how tables are structured in-the-wild, but lack detailed schema information about how tables relate to each other, as well as metadata like data types or integrity constraints. On the other hand, existing multi-table (or database schema) datasets are rather small and attribute-poor, leaving it unclear to what extent they actually represent typical real-world database schemas. In order to address these challenges, we present SchemaPile, a corpus of 221,171 database schemas, extracted from SQL files on GitHub. It contains 1.7 million tables with 10 million column definitions, 700 thousand foreign key relationships, seven million integrity constraints, and data content for more than 340 thousand tables. We conduct an in-depth analysis on the millions of schema metadata properties in our corpus, as well as its highly diverse language and topic distribution. In addition, we showcase the potential of \corpus to improve a variety of data management applications, e.g., fine-tuning LLMs for schema-only foreign key detection, improving CSV header detection and evaluating multi-dialect SQL parsers. We publish the code and data for recreating SchemaPile and a permissively licensed subset SchemaPile-Perm.

Publisher

Association for Computing Machinery (ACM)

Reference58 articles.

1. Detecting data errors

2. Andi Albrecht. 2023. python-sqlparse -- a non-validating SQL parser for Python. https://github.com/andialbrecht/sqlparse

3. WebTables

4. Aurum: A Data Discovery System

5. Cody James Christopher, Kristen Moore, and David Liebowitz. 2021. SchemaDB: Structures in relational datasets. arXiv preprint arXiv:2111.12835 (2021).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Directions Towards Efficient and Automated Data Wrangling with Large Language Models;2024 IEEE 40th International Conference on Data Engineering Workshops (ICDEW);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3