High performance locks for multi-level NUMA systems

Author:

Chabbi Milind1,Fagan Michael1,Mellor-Crummey John1

Affiliation:

1. Rice University, USA

Abstract

Efficient locking mechanisms are critically important for high performance computers. On highly-threaded systems with a deep memory hierarchy, the throughput of traditional queueing locks, e.g., MCS locks, falls off due to NUMA effects. Two-level cohort locks perform better on NUMA systems, but fail to deliver top performance for deep NUMA hierarchies. In this paper, we describe a hierarchical variant of the MCS lock that adapts the principles of cohort locking for architectures with deep NUMA hierarchies. We describe analytical models for throughput and fairness of Cohort-MCS (C-MCS) and Hierarchical MCS (HMCS) locks that enable us to tailor these locks for high performance on any target platform without empirical tuning. Using these models, one can select parameters such that an HMCS lock will deliver better fairness than a C-MCS lock for a given throughput, or deliver better throughput for a given fairness. Our experiments show that, under high contention, a three-level HMCS lock delivers up to 7.6x higher lock throughput than a C-MCS lock on a 128-thread IBM Power 755 and a five-level HMCS lock delivers up to 72x higher lock throughput on a 4096-thread SGI UV 1000. On the K-means clustering code from the MineBench suit, a three-level HMCS lock reduces the running time by up to 55% compared to the C-MCS lock on a IBM Power 755.

Funder

U.S. Department of Energy

Lawrence Berkely National Laboratory

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CAL: Core-Aware Lock for the big.LITTLE Multicore Architecture;Applied Sciences;2024-07-24

2. Lightweight Latches for B-Trees to Cope with High Contention;Lecture Notes in Computer Science;2024

3. Protecting Locks Against Unbalanced Unlock();Proceedings of the 35th ACM Symposium on Parallelism in Algorithms and Architectures;2023-06-17

4. A NUMA-Aware Recoverable Mutex Lock;Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures;2022-07-11

5. Asymmetry-aware scalable locking;Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming;2022-03-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3