JAWS: a JavaScript framework for adaptive CPU-GPU work sharing

Author:

Piao Xianglan1,Kim Channoh1,Oh Younghwan1,Li Huiying1,Kim Jincheon2,Kim Hanjun3,Lee Jae W.1

Affiliation:

1. Sungkyunkwan University, South Korea

2. Company 100, South Korea

3. POSTECH, South Korea

Abstract

This paper introduces jAWS, a JavaScript framework for adaptive work sharing between CPU and GPU for data-parallel workloads. Unlike conventional heterogeneous parallel programming environments for JavaScript, which use only one compute device when executing a single kernel, jAWS accelerates kernel execution by exploiting both devices to realize full performance potential of heterogeneous multicores. jAWS employs an efficient work partitioning algorithm that finds an optimal work distribution between the two devices without requiring offline profiling. The jAWS runtime provides shared arrays for multiple parallel contexts, hence eliminating extra copy overhead for input and output data. Our preliminary evaluation with both CPU-friendly and GPU-friendly benchmarks demonstrates that jAWS provides good load balancing and efficient data communication between parallel contexts, to significantly outperform best single-device execution.

Funder

Ministry of Science, ICT \& Future Planning (MSIP) under the IT Consilience Creative Program

Ministry of Science, ICT \& Future Planning (MSIP) under the Global Excellent Technology Innovation R&D Program

Ministry of Science, ICT \& Future Planning (MSIP) under the Research Project on High Performance and Scalable Manycore Operating System

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference5 articles.

1. WebCL Standard. URL http://www.khronos.org/webcl/. WebCL Standard. URL http://www.khronos.org/webcl/.

2. Web Worker. URL http://www.w3.org/TR/workers. Web Worker. URL http://www.w3.org/TR/workers.

3. Load balancing in a changing world

4. Auto-tuning a high-level language targeted to GPU codes

5. Fluidic Kernels

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PERFORMANCE ENHANCEMENT OF CUDA APPLICATIONS BY OVERLAPPING DATA TRANSFER AND KERNEL EXECUTION;Applied Computer Science;2021-09-30

2. Optimization of JavaScript Large-Scale Urban Simulations;Advances in Intelligent Systems and Computing;2020-08-20

3. A survey on techniques for cooperative CPU-GPU computing;Sustainable Computing: Informatics and Systems;2018-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3