Information visualisation for industrial process monitoring

Author:

Toufaili Elodie1ORCID,Bortolaso Christophe2ORCID,Miloudi Youssef2ORCID,Petit Jean-Marc3ORCID,Scuturici Vasile-Marian3ORCID

Affiliation:

1. Université de Lyon, France and Berger-Levrault, France

2. Berger-Levrault, France

3. Université de Lyon, France

Publisher

ACM

Reference11 articles.

1. M Behrisch 2018. Quality Metrics for Information Visualization. Computer Graphics Forum ( 2018 ), 38. M Behrisch 2018. Quality Metrics for Information Visualization. Computer Graphics Forum (2018), 38.

2. Thyago  P. Carvalho 2019. A systematic literature review of machine learning methods applied to predictive maintenance. Computers & Industrial Engineering 137 (Nov . 2019 ). Thyago P. Carvalho 2019. A systematic literature review of machine learning methods applied to predictive maintenance. Computers & Industrial Engineering 137 (Nov. 2019).

3. Benjamin Chazelle Pierre-Loic Maisonneuve Ammar Mechouche Jean-Marc Petit and Vasile-Marian Scuturici. 2021. From Large Time Series to Patterns Movies: Application to Airbus Helicopters Flight Data. In Advances in Databases and Information Systems. Vol. 12843. Cham 213–226. Benjamin Chazelle Pierre-Loic Maisonneuve Ammar Mechouche Jean-Marc Petit and Vasile-Marian Scuturici. 2021. From Large Time Series to Patterns Movies: Application to Airbus Helicopters Flight Data. In Advances in Databases and Information Systems. Vol. 12843. Cham 213–226.

4. Alexandre Cocheteux , Pierre Voisin, Eric Levrat , and Benoît Iung . 2010. System performance prognostic: context, issues and requirements.1st IFAC Workshop on Advanced Maintenance Engineering, Services and Technology ( 2010 ). Alexandre Cocheteux, Pierre Voisin, Eric Levrat, and Benoît Iung. 2010. System performance prognostic: context, issues and requirements.1st IFAC Workshop on Advanced Maintenance Engineering, Services and Technology (2010).

5. Edward R. Tufte . 2001. The visual display of quantitative information ( second edition ed.). Graphics Press USA. Edward R. Tufte. 2001. The visual display of quantitative information (second edition ed.). Graphics Press USA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3