A Survey of Machine Learning Approaches for Student Dropout Prediction in Online Courses

Author:

Prenkaj Bardh1ORCID,Velardi Paola1,Stilo Giovanni2,Distante Damiano3,Faralli Stefano3

Affiliation:

1. Sapienza University of Rome, Rome, Italy

2. University of L’Aquila, Italy

3. University of Rome Unitelma Sapienza, Rome, Italy

Abstract

The recent diffusion of online education (both MOOCs and e-courses) has led to an increased economic and scientific interest in e-learning environments. As widely documented, online students have a much higher chance of dropping out than those attending conventional classrooms. It is of paramount interest for institutions, students, and faculty members to find more efficient methodologies to mitigate withdrawals. Following the rise of attention on the Student Dropout Prediction (SDP) problem, the literature has witnessed a significant increase in contributions to this subject. In this survey, we present an in-depth analysis of the state-of-the-art literature in the field of SDP, under the central perspective, but not exclusive, of machine learning predictive algorithms. Our main contributions are the following: (i) we propose a comprehensive hierarchical classification of existing literature that follows the workflow of design choices in the SDP; (ii) to facilitate the comparative analysis, we introduce a formal notation to describe in a uniform way the alternative dropout models investigated by the researchers in the field; (iii) we analyse some other relevant aspects to which the literature has given less attention, such as evaluation metrics, gathered data, and privacy concerns; (iv) we pay specific attention to deep sequential machine learning methods—recently proposed by some contributors—which represent one of the most effective solutions in this area. Overall, our survey provides novice readers who address these topics with practical guidance on design choices, as well as directs researchers to the most promising approaches, highlighting current limitations and open challenges in the field.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3