Control Explicit--Data Symbolic Model Checking

Author:

Bauch Petr1,Havel Vojtěch1,Barnat Jiří1

Affiliation:

1. Masaryk University, Brno, Botanicka, Czech Republic

Abstract

Automatic verification of programs and computer systems with data nondeterminism (e.g., reading from user input) represents a significant and well-motivated challenge. The case of parallel programs is especially difficult, because then also the control flow nontrivially complicates the verification process. We apply the techniques of explicit-state model checking to account for the control aspects of a program to be verified and use set-based reduction of the data flow, thus handling the two sources of nondeterminism separately. We build the theory of set-based reduction using first-order formulae in the bit-vector theory to encode the sets of variable evaluations representing program data. These representations are tested for emptiness and equality (state matching) during the verification, and we harness modern satisfiability modulo theory solvers to implement these tests. We design two methods of implementing the state matching, one using quantifiers and one that is quantifier-free, and we provide both analytical and experimental comparisons. Further experiments evaluate the efficiency of the set-based reduction method, showing the classical, explicit approach to fail to scale with the size of data domains. Finally, we propose and evaluate two heuristics to decrease the number of expensive satisfiability queries, together yielding a 10-fold speedup.

Funder

Czech Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Reference73 articles.

1. Symbolic Execution with Abstract Subsumption Checking

2. Emptiness Check of Powerset Buchi Automata using Inclusion Tests

3. D. Babic and M. Musuvathi. 2005. Modular Arithmetic Decision Procedure. Technical Report. Microsoft Research Redmont. D. Babic and M. Musuvathi. 2005. Modular Arithmetic Decision Procedure. Technical Report. Microsoft Research Redmont.

4. Model Checking Parallel Programs with Inputs

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Symbolic Computation via Program Transformation;Theoretical Aspects of Computing – ICTAC 2018;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3