PoBery: Possibly-complete Big Data Queries with Probabilistic Data Placement and Scanning

Author:

Song Jie1ORCID,He Qiang2,Chen Feifei3,Yuan Ye1,Yu Ge1

Affiliation:

1. Northeastern University, Shenyang, Liaoning Province, China

2. Swinburne University of Technology, Hawthorn, Victoria, Australia

3. Deakin University, Docklands, Victoria, Australia

Abstract

In big data query processing, there is a trade-off between query accuracy and query efficiency, for example, sampling query approaches trade-off query completeness for efficiency. In this article, we argue that query performance can be significantly improved by slightly losing the possibility of query completeness, that is, the chance that a query is complete. To quantify the possibility, we define a new concept, Probability of query Completeness (hereinafter referred to as PC). For example, If a query is executed 100 times, PC = 0.95 guarantees that there are no more than 5 incomplete results among 100 results. Leveraging the probabilistic data placement and scanning, we trade off PC for query performance. In the article, we propose PoBery (POssibly-complete Big data quERY), a method that supports neither complete queries nor incomplete queries, but possibly-complete queries. The experimental results conducted on HiBench prove that PoBery can significantly accelerate queries while ensuring the PC. Specifically, it is guaranteed that the percentage of complete queries is larger than the given PC confidence. Through comparison with state-of-the-art key-value stores, we show that while Drill-based PoBery performs as fast as Drill on complete queries, it is 1.7 ×, 1.1 ×, and 1.5 × faster on average than Drill, Impala, and Hive, respectively, on possibly-complete queries.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Liaoning Province

Publisher

Association for Computing Machinery (ACM)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. L/STIM: A Framework for Detecting Multi-Stage Cyber Attacks;2024 International Russian Smart Industry Conference (SmartIndustryCon);2024-03-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3