Affiliation:
1. School of Data Science and Software Engineering, China
2. Department of Electrical Engineering and Computer Science, Embry-Riddle,Aeronautical University, USA
Abstract
It is necessary to solve the inaccurate data arising from data reliability ignored by most data fusion algorithms drawing upon collaborative filtering and fuzzy network theory. Therefore, a model is constructed based on the collaborative filtering algorithm and fuzzy network theory to calculate the node trust value as the weight of weighted data fusion. First, a
FTWDF (Feedback Trust Weighted for Data Fusion)
is proposed. Second,
EEFA (Efficiency unequal Fuzzy clustering Algorithm
) is introduced into FTWDF considering the defects of the clustering structure caused by ignoring the randomness of node energy consumption and cluster head selection in the practical application of the existing data fusion algorithm. Besides, the fuzzy logic is applied to cluster head selection and node clustering. Finally, an FTWDF-EEFA clustering algorithm is constructed for generating candidate cluster head nodes, which is verified by simulation experiments. The comparative analysis reveals that the accuracy of the FTWDF-EEFA clustering algorithm is 4.1% higher than that of the
TMDF (Trust Multiple attributes Decision-making-based data Fusion)
algorithm, and 8.3% higher than that of
LDTS
(
Larger Data fusion based on node Trust evaluation in wireless Sensor networks)
algorithm. It performs better in accuracy and recommendation results during the processing of ML100M dataset and NF5M dataset. Besides, the new clustering algorithm increases the survival time of nodes when analyzing the number of death nodes to prolong networks’ lifespan. It improves the survival period of nodes, balances the network load, and prolongs networks’ lifespan. Furthermore, the FTWDF-EEFA clustering algorithm can balance nodes’ energy consumption and effectively save nodes’ overall energy through analysis. Therefore, the optimized algorithm can increase the lifespan of network and improve the trust mechanism effectively. The performance of the algorithm has reached the expected effect, providing a reference for the practical application of the trust mechanism in networks.
Funder
National Natural Science Foundation of China
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications,Hardware and Architecture
Reference58 articles.
1. A path planning method based on the particle swarm optimization trained fuzzy neural network algorithm [J];Liu Xiaohuan;Cluster Computing,2021
2. IEEE transactions on cloud computing: Entering its fourth year with confidence [J];IEEE Computer Architecture Letters,2016
3. New method of traffic flow forecasting based on quantum particle swarm optimization strategy for intelligent transportation system[J];Wang J. X.;International Journal of Communication Systems,2020
4. A new constructing approach for a weighted topology of wireless sensor networks based on local-world theory for the Internet of Things (IOT)
5. Adaptive repair algorithm for TORA routing protocol based on flood control strategy [J];Liu S.;Computer Communications,2020
Cited by
88 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献