Faster Algorithms for Dynamic Algebraic Queries in Basic RSMs with Constant Treewidth

Author:

Chatterjee Krishnendu1,Goharshady Amir Kafshdar1,Goyal Prateesh2,Ibsen-Jensen Rasmus3,Pavlogiannis Andreas4

Affiliation:

1. IST Austria, Klosterneuburg, Austria

2. MIT, Cambridge MA, USA

3. University of Liverpool, Liverpool, United Kingdom

4. Aarhus University, Aarhus, Denmark

Abstract

Interprocedural analysis is at the heart of numerous applications in programming languages, such as alias analysis, constant propagation, and so on. Recursive state machines (RSMs) are standard models for interprocedural analysis. We consider a general framework with RSMs where the transitions are labeled from a semiring and path properties are algebraic with semiring operations. RSMs with algebraic path properties can model interprocedural dataflow analysis problems, the shortest path problem, the most probable path problem, and so on. The traditional algorithms for interprocedural analysis focus on path properties where the starting point is fixed as the entry point of a specific method. In this work, we consider possible multiple queries as required in many applications such as in alias analysis. The study of multiple queries allows us to bring in an important algorithmic distinction between the resource usage of the one-time preprocessing vs for each individual query. The second aspect we consider is that the control flow graphs for most programs have constant treewidth. Our main contributions are simple and implementable algorithms that support multiple queries for algebraic path properties for RSMs that have constant treewidth. Our theoretical results show that our algorithms have small additional one-time preprocessing but can answer subsequent queries significantly faster as compared to the current algorithmic solutions for interprocedural dataflow analysis. We have also implemented our algorithms and evaluated their performance for performing on-demand interprocedural dataflow analysis on various domains, such as for live variable analysis and reaching definitions, on a standard benchmark set. Our experimental results align with our theoretical statements and show that after a lightweight preprocessing, on-demand queries are answered much faster than the standard existing algorithmic approaches.

Funder

European Research Council

Austrian Science Fund

Österreichischen Akademie der Wissenschaften

Facebook

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploiting the Sparseness of Control-Flow and Call Graphs for Efficient and On-Demand Algebraic Program Analysis;Proceedings of the ACM on Programming Languages;2023-10-16

2. The Bounded Pathwidth of Control-Flow Graphs;Proceedings of the ACM on Programming Languages;2023-10-16

3. Efficient Interprocedural Data-Flow Analysis Using Treedepth and Treewidth;Lecture Notes in Computer Science;2023

4. Optimal Mining: Maximizing Bitcoin Miners' Revenues from Transaction Fees;2022 IEEE International Conference on Blockchain (Blockchain);2022-08

5. Efficient approximations for cache-conscious data placement;Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation;2022-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3