DADS

Author:

Wedaj Samuel1,Paul Kolin2,Ribeiro Vinay J.1

Affiliation:

1. Indian Institute of Technology Delhi, New Delhi, India

2. Indian Institute of Technology Delhi, India and TalTech, Tallinn, Estonia

Abstract

We present a novel scheme called Decentralized Attestation for Device Swarms (DADS), which is, to the best of our knowledge, the first to accomplish decentralized attestation in device swarms. Device swarms are smart, mobile, and interconnected devices that operate in large numbers and are likely to be part of emerging applications in Cyber-Physical Systems (CPS) and Industrial Internet of Things (IIoTs). Swarm devices process and exchange safety, privacy, and mission-critical information. Thus, it is important to have a good code verification technique that scales to device swarms and establishes trust among collaborating devices. DADS has several advantages over current state-of-the-art swarm attestation techniques: It is decentralized, has no single point of failure, and can handle changing topologies after nodes are compromised. DADS assures system resilience to node compromise/failure while guaranteeing only devices that execute genuine code remain part of the group. We conduct performance measurements of communication, computation, memory, and energy using the TrustLite embedded systems architecture in OMNeT++ simulation environment. We show that the proposed approach can significantly reduce communication cost and is very efficient in terms of computation, memory, and energy requirements. We also analyze security and show that DADS is very effective and robust against various attacks.

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,General Computer Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. LICAPA: Lightweight collective attestation for physical attacks detection in highly dynamic networks;Pervasive and Mobile Computing;2024-04

2. AI-Powered Security for IoT: A Blockchain Enabled Device Twin Approach;Online Identity - An Essential Guide [Working Title];2023-12-08

3. Formally verified bundling and appraisal of evidence for layered attestations;Innovations in Systems and Software Engineering;2022-09-04

4. Delica: Decentralized Lightweight Collective Attestation for Disruptive IoT Networks;2021 IEEE 27th International Conference on Parallel and Distributed Systems (ICPADS);2021-12

5. A Security Integrated Attestation Scheme for Embedded Devices;2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC);2021-11-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3